Simulation-based System Engineering in the Virtual Satellite Project

Axel Berres, Olaf Maibaum
Simulation and Software Technology
German Aerospace Center (DLR)
Overview

- Goals of the Virtual Satellite project
- Requirements for Data Exchange
- Realization in the Virtual Satellite project
- Conclusions
Goals of the Virtual Satellite project

- Consistent system model in the engineering process
 - Across the space project phases defined in ECSS
 - Across the engineering domains (Thermal, Electric, Propulsion, ...)
- Early analysis of spacecraft design in dynamic mission scenarios
- Early test of control algorithm with the virtual spacecraft model
- Collect enterprise knowledge on systems, components, units and parts
 - Conserved in dynamic or static simulation models
 - Enhanced with performance data collected in real missions
 - To be reused in follow-on projects
- Basis for reuse strategy in the space system design process
Classification in ECSS process

CDF

Virtual Satellite

Phase 0 Phase A Phase B Phase C Phase D Phase E Phase F
Requirements for product data exchange

1. Tool-independent process
2. System design based on a consistent central data model
3. Semantic linkage within the system component library
System Engineering Process

- Three main parts
 - Modeling and Simulation
 - Analysis
 - Optimization

- Define system models and derived options in an iterative process

- Decision on design changes based on review by domain experts
Modeling

Simulation Modeling

Integration

- system components
- system design model
- refine in each phase
- model parameter
- data exchange
- system component library
System Component Library

- Hierarchical structure, from entire spacecraft models to components
 - entire spacecraft models
 - spacecraft subsystems
 - For example a wheel torquer arrangement
 - previously used components
 - Usage Information
 - Sources
 - Reliability Data
 - Alerts
- Model browser: Look-up existing models / create new models
- Spacecraft ontology
 - Definitions of terms and associations
System Component Library (cont.)

- Construction kit for preliminary system designs
 - Provide SysML representation of
 - Components
 - Subsystems
 - Spacecraft designs
 - Meta-models

- Library for simulation know-how
 - Preserve simulation model binary or source codes
 - Parameterizations
 - Model interfaces (Ports)
 - Configurations
Transformation

Simulation Modeling

Transformation

- system design model
- system simulation

- model parameter
- simulation results

- data exchange
- data parking
Model Transformations

- Into integrated design model (IDM)
 - import and export

- Into executable simulation codes
 - Sources
 - Platform specific (Modelica, Matlab, C-Sources, etc.)
 - System model in SysML
 - Simulation codes/binaries from system component library
 - Parameterization

- Data extraction for domain-specific simulation with third-party tools
 (thermal, electric, kinematics, etc.)
Simulation and Analysis

Simulation Modeling

Integration

Transformation

automatic test environment

system simulation

evaluation results

data parking

simulation & analysis environment

mission scenarios
Consistent System Model

- Data exchange during collaboration
 - Consistent model parameter set
 - Notification of data and model changes

- Ensure model quality
 - Definition of meta models
 - Modeling rules
 - Model checking
Concurring Engineering Facility (CEF)

- Similar equipment as in Concurrent Design Facility (CDF)
- Located at DLR Institute of Aerospace Systems (Bremen)

Purpose
- Development of mission scenarios
- System design studies
- Analysis of system design in mission scenarios
 - Static view
 - Dynamic view
Conclusions

- Knowledge management system for spacecraft technology
 - Data base of typical components
 - Reuse of proven subsystem and spacecraft designs
 - Preservation of engineering experiences
 - Management of alerts among different space missions with reused components

- Dynamic simulation early in the development process
 - Detect system inconsistencies early
 - Minimize risk
 - Shorten development time and save costs
Thank you for your attention