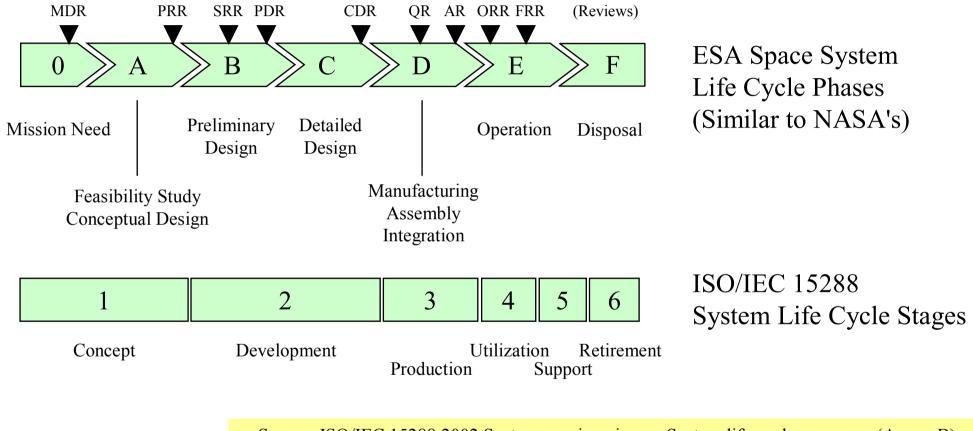
#### Data Exchange Standards and Ontologies for Engineering

#### How to make the best use of both

Hans Peter de Koning (ESA/ESTEC, Noordwijk, The Netherlands)



### Why do we need open standards based data exchange and sharing

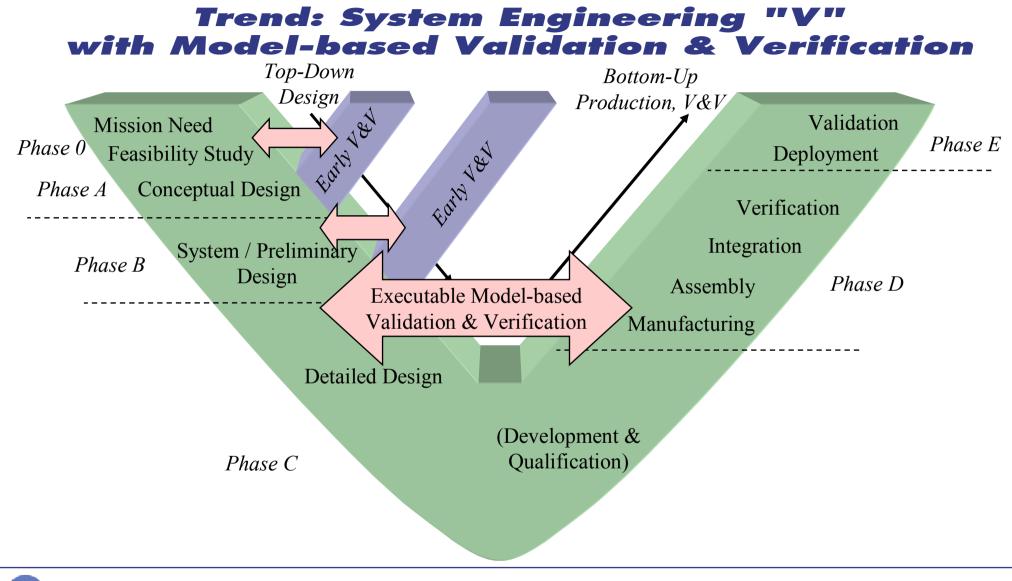

- Essential for efficient and cost-effective development and operation
- Design, analysis and simulation tools for each of the individual engineering disciplines are quite mature today
- A next major efficiency improvement in the development of complex (space) systems needs to come from much better, easy-to-use and reliable integration of computer aided engineering tools and methods across disciplines, system breakdown, supply chain
- All analysis and simulation models need to be linked into the core system requirements database, functional breakdown, architectural design, product structure
- Support for multi-disciplinary design optimization and multi-physics
- Support for distributed project teams



9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

Mechanical Engineering Department Thermal and Structures Division

### **System Life Cycle**

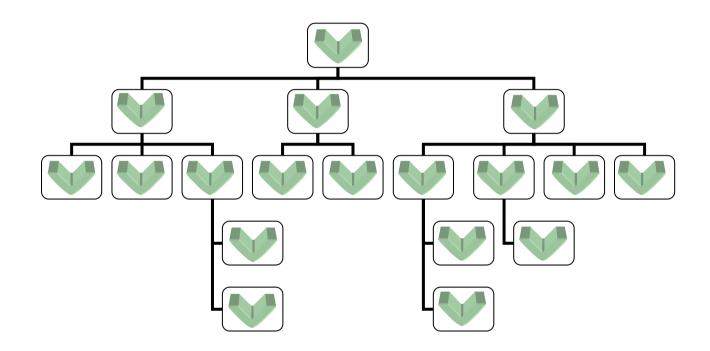



Source: ISO/IEC 15288:2002 Systems engineering — System life cycle processes (Annex B)

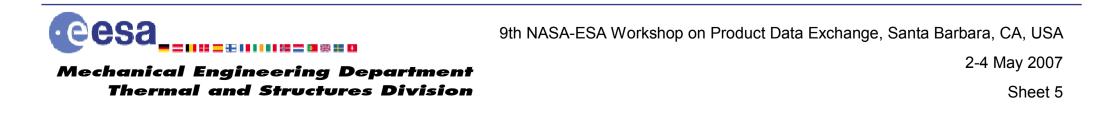


9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

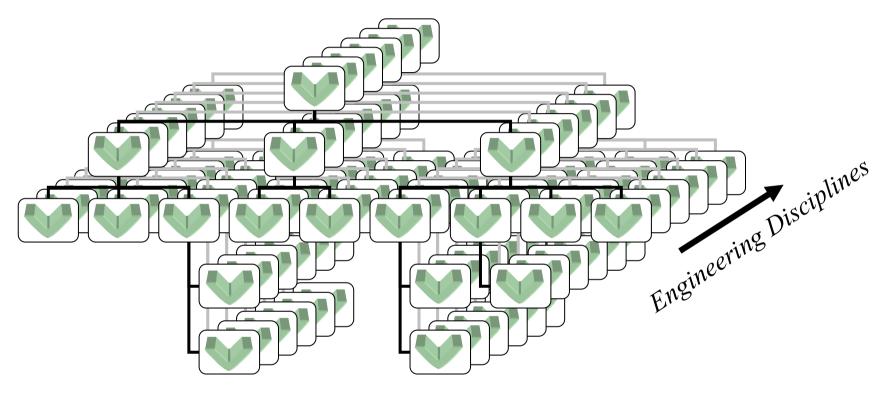
2-4 May 2007







9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

2-4 May 2007


"V" applied recursively at all subsystem/subcontractor levels throughout the supply chain



System of Systems pattern: A subsystem at one level is a system at the next lower level



#### "V" applied recursively at all subsystem/subcontractor levels and for all engineering disciplines



*Complex system & Large (international) supply chain & Multiple disciplines =* 

Very large number of (process-) interfaces



9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

2-4 May 2007

## Holy grail of exchanging & sharing data (1)

- Seamless and total interoperability
  - Across disciplines, organizations, system levels, modelling methodologies, tools
- Flexible <u>and</u> precise formal open standards
- Reliable and affordable
- Affordable timely implementation <u>and</u> rigorously verified interfaces
  - Requires high quality public testsuites with adequate coverage
- Future proof and stable for long term archiving
  - May include open source middleware



9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

Mechanical Engineering Department Thermal and Structures Division

### Holy grail of exchanging & sharing data (2)

- Scaleability from small messages to full design/analysis/test/operation datasets
- Pervasive and standardized configuration control / versioning
- Minimal loss of information and common denominator between different (classes of) tools
- Easy-to-use/easy-to-implement and spanning many disciplines
- Support for white-box and black-box (degenerated/encrypted) data
  - Coming from genuine business needs and IPR protection



9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

Mechanical Engineering Department Thermal and Structures Division 2-4 May 2007

Sheet 8

#### "Classical" Engineering Data Standards and Ontologies

- "Classical" engineering data exchange/sharing standards
  - Scope is usually a relatively specific and confined end-user problem
  - Terminology from software engineering (OO and/or ER)
  - Explicit, often detailed formal data model or just a file format
  - Reflection capabilities depend on implementation programming language
- Ontologies
  - Scope is often a "grand" data sharing problem for a complete industrial/scientific sector
  - Terminology shows scientific background, coming from philosophy, linguistics, artificial intelligence
  - Simple core data model allowing to state a large number of 'facts'
  - Built-in extensibility
  - Allows automated reasoning (inferencing) and has built-in reflection



9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

Mechanical Engineering Department Thermal and Structures Division

#### **Ontology** spectrum

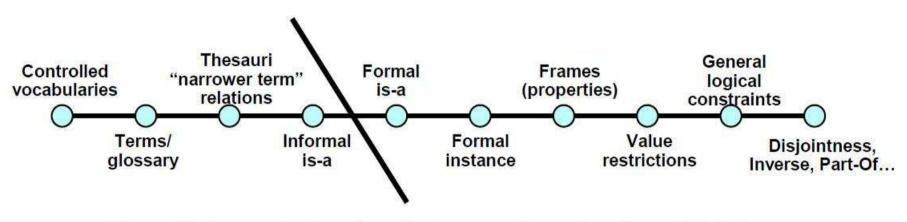



Figure 15, Categorization of ontologies according to Lassila and McGuinness

Source: PhD thesis Andries van Renssen



9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

2-4 May 2007

# Terminology

| Entity-<br>Relationship    | Object-Oriented<br>Software Engineering      | RDF/OWL<br>(Semantic Web) | Description Logics   | Frame Systems                  |
|----------------------------|----------------------------------------------|---------------------------|----------------------|--------------------------------|
| entity, datatype           | class, datatype                              | class, datatype           | class, concept       | frame, schema                  |
| object                     | instance, object                             | resource,<br>individual   | instance, individual | frame, instance,<br>individual |
| attribute,<br>relationship | attribute, instance<br>variable, data member | property                  | role                 | slot                           |
| value                      | value                                        | property value            | filler               | filler                         |



9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

Mechanical Engineering Department Thermal and Structures Division 2-4 May 2007

Sheet 11

## Layers in different standard families

| Standard family              | ISO 10303 (STEP)                                                                                                                   | W3C XML                                                                   | W3C Semantic<br>Web                             | W3C Ontology                                           | OMG<br>UML/MDA                        |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|---------------------------------------|
| Origin                       | Mechanical engineering                                                                                                             | Structured web data                                                       | Structured web<br>data with<br>meaning          | Structured web data<br>capturing knowledge             | Software<br>engineering               |
| Data structure<br>definition | ISO 10303-11 EXPRESS                                                                                                               | DTD<br>XML Schema                                                         | RDF Schema<br>(uses XML<br>Schema<br>datatypes) | OWL (Lite/DL/Full)<br>(builds on top of RDF<br>Schema) | MOF<br>UML/OCL<br>XMI                 |
| File exchange                | ISO 10303-21 clear text encoding<br>("STEP file")<br>ISO 10303-28 XML encoding<br>ISO 10303 Binary (in progress,<br>possibly HDF5) | XML Unicode<br>encoding (e.g.<br>UTF8)<br>XML/Binary<br>(progress unkown) | RDF-XML                                         | OWL-XML                                                | -                                     |
| Data access API              | ISO 10303-22 SDAI<br>ISO 10303-23 C++<br>ISO 10303-24 C<br>ISO 10303-27 Java                                                       | DOM<br>SAX<br>(many open source)                                          | RDF library<br>(various open<br>source)         | OWL library<br>(various open source<br>e.g. Jena)      | Generated<br>from UML<br>model<br>QVT |



9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

Mechanical Engineering Department Thermal and Structures Division 2-4 May 2007

Sheet 12

### **Pros and Cons**

|                                 | Advantages                                                                                                                                                                        | Disadvantages                                                                                                                                                                         |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| "Classical"<br>engineering data | Terminology closer to engineering domains / database technology                                                                                                                   | Rigid relatively inflexible formal structure, costly to extend                                                                                                                        |  |  |
| exchange/sharing<br>standards   | Explicit scope, therefore<br>implementations are in principle<br>exhaustively verifiable                                                                                          | Complex data model, often steep learning curve for implementers                                                                                                                       |  |  |
| Ontologies                      | Flexible, extendible<br>Simple core data model<br>Supports automated reasoning<br>Lowers integration barriers<br>Strong support from W3C / semantic<br>web / open source software | Terminology "foreign" to engineering<br>domains, therefore learning curve<br>Implicit, extendible scope, therefore<br>implementations are in principle not<br>exhaustively verifiable |  |  |



9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

Mechanical Engineering Department Thermal and Structures Division

### Questions

- How to reap benefit of ontology based data standards, while keeping data exchange/sharing implementations affordable?
- How to test correctness and completeness of implementations?
  - Complete mapping of native (source or target) data structure to ontology
  - Exhaustive testing possible? Sufficient test coverage possible?
- How to overcome terminology issues and differing capabilities within data standardization technologies itself?
- How to manage public (or community) reference data libraries / dictionaries / upper ontologies?
  - Public funding? Management authority? Peer reviews? Conflict resolution?
  - Long term archiving? Backwards compatibility?
- How to address IPR/confidentiality issues? How fine-grained access control?



9th NASA-ESA Workshop on Product Data Exchange, Santa Barbara, CA, USA

2-4 May 2007