
A Language for
Engineering Design

Walter W. Wilson

Lockheed Martin Enterprise Information Systems
& The University of Texas at Arlington

Workshop on Product Data Exchange
May 2-4, 2007

Santa Barbara, CA

2

Overview

What is the best way to represent an engineering
design?

• Problems with commercial CAD systems
• Limitations of STEP
• Proposal:

1. A language for engineering design
2. Open source geometric engine
3. A minimal standard language for implementation

• Related work
• Summary

3

Problems with CAD Systems

• Data stored in a proprietary binary format
• You need a license to access your own data!
• Hard to transfer high-level info between systems
• Will data be accessible decades from now?
• Can we have the openness of paper drawings with

a digital representation?

4

Limitations of STEP
• useful operations & geometry types missing:

– geodesic curves, tapered offset surfaces

• lags behind commercial CAD systems
– standardization process is slow
– must compromise differences in systems
– vendors may be slow to implement

• no programming capability
– a data-only format is inherently limited in its features

(programmability gives extensibility without having to
change the standard)

– customizations not supported

Thus, information usually lost when writing STEP.

5

Proposal

1. A language for engineering design
2. Open source geometric engine for this

language
3. Implementation of geometric engine in a

standard minimal declarative language

6

An Engineering Design Language - EDL

• Textual, human-readable language for
engineering design

• Stores definitions of geometry instead of
megabytes of data

• Screen image, STEP files, etc., generated from
the text definitions

• Interactive system would create & edit the text
files

• A domain-specific language for "complex" data
(functions + data)

7

EDL Example
(definitions

…
(PT3 (coords 5 15 1.5))
(CRV1 (cubic-spline PT1 PT3 PT4 (project PT2 SURF1))
(SURF2 (offset 0.1 SURF1))
(CRV2 (geodesic SURF2 PT1 PT4)) ! geodesic curve
(ht .5) ! symbolic constants
(radius .3)
(depth .2)
(SOL1 (cuboid (coords 0 0 0) (coords 2 3 ht))

(hole (coords 1 1.5 ht) radius depth))
! – cuboid solid with cylindrical hole

…
)

8

EDL Example (2)

Language would support new function definitions:

(function (Block side)
(height .5)
(- (cuboid (coords –side/2 –side/2 0)

(coords side/2 side/2 height))
(+ (cylinder (coords -.5 -.5 0) (dir 0 0 1) .25)

(cylinder (coords .5 .5 0) (dir 0 0 1) .25))
))

(Block1 (Block 2.0))
(Block2 (Block 2.5))
… or

(for i in 0..9 do
(B<i> (Block 2.0+.25*i))

9

EDL Advantages

• Text definitions are human readable
• Data is stored at a higher semantic level

– Engineering knowledge can be captured

• Text definitions complement image
– Image gives fast, intuitive understanding
– Text gives precise and complete information

• Editing can be done both textually & graphically
– Some modifications are easier in text: undo/redo

• Complete history and associativity is inherent
• Parametric design is encouraged

10

EDL Advantages (2)

• Definition of new functions is easier
– Customizations can be saved

• Better support for design automation
– Creating new functions for repetitive operations
– Adding analysis functions for design optimization

• Comments can be added to definitions
• Definitions would be “exact”

– 0.1, 1/3, cos30deg, geodesic
• Easier design reuse
• Data has modeler independence

11

The Case for an Open Source Modeler

• Better algorithms
• Enables continuous improvement of EDL
• Understanding and control of approximations
• Identical results on different systems
• Long-term accessibility
• Implementation openness

12

The Language for EDL Implementation
• this would be the standard – not the EDL

– allows engineering design language to evolve
• requirements:

– small & elegant
– long-lasting (forever?)
– explicit approximate arithmetic

• symbolically defined floating point operations
• identical results down to the last bit

– efficiency not a requirement for long-term archiving
– efficiency may not be a requirement for general use

if sophisticated optimization is possible
• use minimal functional or logic programming language

13

My Pick for EDL Implementation

• "axiomatic language" – www.axiomaticlanguage.org
• specification language

– functions defined without implementation algorithm

• minimal – nothing is built-in
– easy to standardize
– approximate arithmetic symbolically defined

• meta-language
– able to define other languages within itself
– EDL would be an embedded domain specific language

But automatically transforming specifications to
efficient algorithms is an unsolved problem!

14

Related Work

• XML – Ok, but not a programming language
• Programming APIs – Djinn
• Domain specific languages – EREP, PLaSM
• Embedded DSLs

– Haskell.org (graphics, animation, music)

15

Summary
• A language is a better representation for

engineering design data
• A better design product

– Higher level definitions
– Better documentation and understanding
– More optimal design

• Greater productivity for the engineer
– Easier refinement of the design
– Increased design automation

• Open source definition of EDL is essential
• "axiomatic language" is good candidate

16

Appendix – Axiomatic Language Semantics
Axioms generate valid expressions.
expression:

an atom – a primitive, indivisible element,
an expression variable, or
a sequence of >=0 expressions and string variables

axiom – a conclusion expression and >=0 condition
expressions

Axioms generate axiom instances by substituting values
for the expression and string variables. (expressions for
expression variables; strings of expressions and string
variables for string variables)

valid expression – If all the conditions of an axiom
instance are valid expressions, then the conclusion is a
valid expression.

Valid expressions are interpreted as functions and
programs.

